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Analytical relations are examined which can be useful for study, by the phase-plane 
method, of nonlinear self-excited oscillations in an electric circuit containing a 
thermistor and a linear reactive element. 

The electrothermal processes occurring in a thermistor after it has been connected into 
an electric circuit are well known to owe their peculiarities, above all, to the nonlinearity 

of its current-voltage characteristic with a range of negative differential resistance. 
Several studies have dealt with the so-called relay effect which occurs upon such a switching. 
In [I], specifically, was noted the possibility of a self-ocillatory process taking place in 
a circuit which contains a thermistor and a capacitor for the first time. The essence of this 
phenomenon has been discussed most extensively in [2], on the basis of thorough delving into 
the nature of these oscillations and with a mathematical apparatus for analysis of their 
stability. The linear model of a thermistor was used there for analysis of the oscillations. 
Such an approach is quite effective in the solution of problems pertaining to buildup and 
decay of oscillations nearly sinusoidal in form. 

The linear theory does not reveal, however, whether nonsinusoidal oscillations can occur 
in such a circuit and remain stable. Nevertheless, the very existence of nonharmonic oscilla- 
tions has been established experimentally [2] and the general trend of their dependence on the 
circuit parameters experimentally studied there. An analytical description of nonlinear 
oscillations is still sought. 

In this report will be presented results of a qualitative study of the dynamics of elec- 
trothermal processes in an electric circuit containing a thermistor, a study made by methods 
of the theory of oscillations and the theory of bifurcation [3, 4], a study supplementing [2] 
and revealing some peculiarities of these processes. 

The qualitative analysis will begin with consideration of the fundamental equation of a 
thermistor 

Cv dA__TT = Pz -- HAT (1) 
dt 

It has already been demonstrated [5] thlt an accurate enough approximate solution to this 
equation can be obtained, after the hypothesis of a "hot" gas of charge carriers in the 
thermistor 

AT = AT~ + hTp + AT o (2) 

has been introduced. On the basis of this condition, Eq. (I) can be written as 

Cv d AT~ -t- Cv dATv __ P r - -  H(AT~ q- ATp + ATo). (3) 
dt dt 

According to [5], the temperature of the crystal lattice T L is related to the thermistor 
current through the equality 

NL 

In order to find an expression relating t h e  temperature of the gas of charge carriers to 
the electrical parameters of the thermistor, we use the results of [6]. According to the con- 
cepts about the kinetics of nonequilibrium processes occurring in semiconductors with an S- 
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form current--voltage characteristic presented in that study, the temperature T e of the elec- 
tron (charge carrier) gas is related to the electric field intensity m in the semiconductor 
through the proportion 

2 

T~ N E ~-~. (5) 

In order for the current--voltage characteristic to be  an S-curve, it is necessary that n be 
smaller than m. This condition will be fulfilled the cause of momentum relaxation in the 
semiconductor is scattering by impurities (m = 3/2) and the cause of energy relaxation in the 
semiconductor is piezoelectric scattering by acoustic phonons (n = 1/2). 

We cannot assert that such a pattern of scattering prevails in a thermistor, but assuming 
that it does will lead to the relation 

T~ ~ ET 2 , (6) 

implying that the electron temperature increases as the electric field intensity decreases. 
The magnitude of AT e can be found by expanding the left-hand side of the expression 

i 
NE~ (7) 

T~ 
0 into a Taylor series in AT e in the vicinity of the lattice temperature T L and retaining the 

linear approximation 

Tp - -  AT~ ~ E~. (8) 

Upon introduction of the proportionality factor Ne, one can write 

-... o NoUn. (9) AT~ ~ Tp -- 

We will now consider an electric circuit consisting of a linear active four-pole network with 
a thermistor connected at the input and a linear reactive element connected at the output. 
Let the latter be a capacitance C C. 

According to fundamental principles of the theory of linear four-pole networks, the rela- 
tion between input and output parameters of such a network are 

Ur = AU~ + BI~ + L, (10)  

IT == CU~ q- OIo q- M. ( l l )  

The power generated in the thermistor is obviously 

Pr = Ir UT = (AU~ -F BI~ -]- L)'(CU~ -{- DI~ ~- M). (12) 

Inserting expressions (4), (9) and (12) into Eq. (3), we obtain, after appropriate trans- 
formations, 

dt 

where 

a, == C i  -5 AM - -  H .. C - -  2HN~AL; 
N~ 

Bt= 2 N~CV-LA CvC ~_ BM @ D L _  H H_D+2BLN~H; 
Cc NpC c N~ 

CV "2 ~h = AD -k BC -k 2N~HAB + 2N~ - - -  A ; 
Cc 

~ = -k 2N~ Cv A B - k  BD + N~HB2; 6~= AC ~- N~HA2; 
Cc 

*h = M L - -  H M q- N~HL 2 ~- H 1% __ HTOp__ HATo; 
Np Np 

Cv 
13e = D--2Ne!_B; Z2~--2N~Cv BZ; Y2=--2N~Cv AB. 

Nv 
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We have taken into consideration here that 

Letting arbitrarily 

d2Uc= die 
Ce due _ L ;  Cc ctt2 

dt dt 

due 
U o = x ,  C c - -  = v, 

clt 

we transform Eq. (13) to the system of equations 

dx (14) 
Cc-  ~ : g. 

The system of Eqs. (14) is an autonomous dynamic one of the second order with an analytic 
right-hand side. It can be examined by methods and procedures of qualitative analysis in the 
phase plane. For convenience, we will reduce system (14) to a simpler form by eliminating 
the free term n,. For this we determine the roots of the function 

[ (X) = ~1 ~ -}- ~1 x -]" n l  ~--- ~ (X]--  K1) (X -- Ks). 

Denoting these roots as Kx and Ka, we have 

K1,2 = -- =I -4- V~ -- 481~ 1 2~ (is) 

Introducing now the new variable 

we rewrite system (14) as 

Z : I - - K 1 ,  

y ,  = - -  ~1 (Ks - -  K1) Z -[- ([~1 "-[- *~IK1) y -~ '~lZ~ / -t- ~1/_] 2 AC ~1 Z2 __ Q (z, ,~/) ( 1 6 )  

1 [(13 2 + ?~KI) g + y~zg -F ~g~l P (z, g) '  
Cc  

where y' = dy/dz. 

We note that the physical system under consideration here (four-pole network with 
capacitor and thermistor) is a priori known to be a nonconservative one, as a consequence of 
which its singular points (equilibrium states) are gross ones. 

According to the theory of nonlinear oscillations [3], gross equilibrium states corre- 
sponding to points in the phase plane where simultaneously P(z, y)~ ffi 0 and Q(z, y) = 0 are 
characterized by the signs of A and ~ at these points. 

Limiting our concern in this case to the character of only two singular points (out of 
four possible ones in system (14)) for which y - 0 or I c = 0, which is equivalent, we have 

at point K(0, 0) 

P~ (0, O) P~ (0, O) I 1 
AK -- [ = ~1 (Ks --/(1) (~s 3c VsK1) CC , 

Q~(O, o) Q~(o, o) 

~,~ = P~ (o, o) + O~ (o, o) = ~ + ~K~, 

(17) 

and 

a t  point S(Ka -- K~, O) 

P; (K~ --/(1,  0) P~ (K~ -- / (1,  O) 
AS = = -- 8, (K~ -- K1) [Ys (Ks -- KI) @ (~s ~- Y~KI)I - -  

Q; (K~-- K~, o) Q~ (Ks - -  K,, o) 

os = P; (/(2 --/(1,  0) -l- Q; (Ks - -  K,, 0) = 13x + YlKS. 

1 

C C ' (18) 

Upon inserting specific values of the electric circuit parameters into these express~ions, 
one can determine whether a given point is a node, a focus, or a saddle. 
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TABLE i. Bifurcation of Dynamic System Due to Change in Sta- 
bility of Complex Focus 

Signs of L~, ~" 

L I < 0  , cr '>0 

LI<0  , o ' < 0  

LI>0  , or'>0 

L~>0, o ' < 0  

~<0 

ocus stable, no cycle 

ocus unstable, cycle 
table 
~ocus stable, cycle un- 
;table 

Focus unstable, no cycle 

1 ~ = =  0 

Focus stable, no cycle 

Same 

Focus unstable, no cy- 
cle 

Same 

~ > 0  

Focus unstable, cy- 
l ele stable 

Focus stable, no 
cycle 

Focus unstable, no 
cycle 

Focus stable, cycle 
unstable 

In order to determine the possibility of a limit cycle existing in the phase plane of 
Eq. (16), or, in other words, the possibility of self-excited oscillations occurring in the 
circuit with a thermistor and a linear capacitance, it is necessary to determine for this 
equation its so-called first Lyapunov parameter L, [4] 

L, = -- a 61 {61 (Kz -- K1) z %z (~2 @ %1) -- ~i (~ @ Y2KI)[LI'(Kz -- KI) @ ~z ~- Y~KI]}. 
- 4 (~  § Y~gl) [61 (Kz - -  K0 (~ + Y~K01 a/~ 

(19) 
One must also know, for this purpose, the sign of the quantity 

and that of its first derivative with respect to any of the circuit parameters (e.g., Co). 

After the signs of L~, ~k, and (=k)6c have been determined, the question as to whether a 
limit cycle exists can be answered with the aid of a table. 

In order to demonstrate that in a circuit containing a thermistor and a linear capacitance 
with an active linear four-pole network there can occur self-excited oscillations, we consider 
the simplest electric circuit consisting of a thermistor connected in parallel across a linear 
resistance and a capacitance in series. 
[2] in detail. 

Starting with the obvious relations 

Such a circuit has already been studied experimentally 

Ur = Uc, Ir  Uc lc + _E__ (20) 
R R'  

we determine the coefficients of the four-pole network 

1 f 
A = l ,  C-------- D = - - I ;  M - -  , B = / - O .  

R '  R 

The dynamic processes in this circuit are described by the differential equation 

y, = a i lX q- ~iiY @ YnXy @ 61i x~ -~- /]11, 

~2iY 
where 

%1 = R , ~11 Np NvCct~' 

Cv 1 
YII = ~  - -  2No 7 -1- 1 ; 611 = --NoH; 

C:c R " 

H (  _~_) HTO HATo; ~ l  Cv 1111 = _-77-_ Io . . . .  . Np NpCc  

(21) 

The roots Ka and Ka are evaluated according to expression (15), viz. 

x (22) 
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By matching the parameters of the thermistor and of the other circuit elements, also 
the conditions of heat transfer, one can make ~i < 0, u** < O, n** > O, and Y,I > 0, if the 
roots K~ and K, are real. In that case KI # K,, because system (21) is nonconservative (with 
the roots equal, the system would be conservative). We will assume, for specificity, that 
KI > 0 > K~. The sign of the de=erminant A are then A K > 0 at point K and A S < 0 at point S. 

Therefore, point S is always a saddle and the character of point K is determined by the 
' -- 4A K. Point K is a focus when o~-- 4AK < 0 and a node in the sign of the discrlminant qK 

opposite case. 

Let us select the circuit parameter C C so that at point K%rill be simultaneously satis- 
fied by the conditions 

UK = ~11 @ ?llK1 > 0 and ~ - -  4A~ < 0. 

Then the first Lyapunov parameter at point K will be 

a ~11711~21 
4 [6** (g2 - -  Kt) ~ , 1  a/2 < 0, 

and, since (Ok)'Cc > 0, the table indicates the existence of a stable limit cycle in system 
(21). This means that, with the parameters of the given electric circuit appropriately 
matched, there will occur stable nonlinear self-exclted oscillations. 

We note that the stability at point K can be changed by a decrease of parameter CC, which 
will make the limit cycle vanish and the focus become stable. Decreasing C C further will 
eventually convert the stable focus to a stable node. 

This peculiarity of the oscillatory process, well reflected in the proposed mathematical 
model, corresponds closely to the manner in which the transient process depends on the magni- 
tude of the capacitance according to practical observations [2]. 

The second peculiarity of the transient process, which can also be observed in practice, 
is that the conditions for occurrence of self-exclted oscillations depend strongly on the 
conditions of heat transfer from the thermistor to the ambient medium. This dependence is 
also evident in the proposed mathematical model, where H appears as a component of terms in 
the expressions for A and q. 

Furthermore, there exists an analogy between the phase portrait of an actual dynamic 
system "capacitance--linear resistance-~hermlstor" and the phase portrait of the dynamic sys- 
tem described by Eq. (21). One can ascertain this by comparing the experimental curves of 
study [2] with the results of analysis of a mathematical model of the (21) kind in study [7]. 

On the basis of the preceding comments, one can assume that the results of this study 
will be of definite interest not only as a supplement to the overall study of oscillatory 
processes in circuits with thermistors [2] but also as a useful tool for solving various 
practical problems concerning the application of thermistors in automatic control systems, 
in measuring systems, and in several other kinds of systems. 

NOTATION 

T, total temperature of a thermistor, ~ TL, temperature of the thermistor lattice, ~ 
To, temperature of the hot gas of charge carriers, ~ TL ~ initial temperature of a thermis- 
torD ~ To, ambient temperature, ~ ATe = Te -- TL; ATL = TL--TL~ ATo = TL ~ -- To; H, dis- 
sipation coefficient for a thermistor, W/~ CV, specific heat of a thermistor, W.sec/~ 

~ (A/~ Ne(~ proportionality factors; ~, electric field intensity in a thermistor, V/m; 
, power generated in a thermistor by passing current, W; IT, thermistor current, A; Io, 

thermistor current at t = +0, A; UT, thermistor voltage, V; Uc, voltage across the capacitance, 
V; CC, capacitance, F; E, circuit supply voltage, V; A, B, C, D, L, M, coefficients of a 
linear active four-pole network; R, linear resistance ~; and t, time, see. 
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METHOD OF REDUCTION TO THE ORDINARY DIFFERENTIAL EQUATIONS 

OF L. V. KANTOROVICHANDA GENKRALMETHOD FOR THE SOLUTION 

OF MULTIDIMENSIONAL KEAT-TRA~SFER EQUATIONS 

V. G. Prokopov, E. I. Bespalova, 
and Yu. V. Sherenkovskii 

UDC 536.2:517.946 

A method is proposed for the solution of multidimensional heat-transfer problems, 
representing a further elaboration and generalization of projection methods. 

The mathematical investigation of heat- and mass-transfer processes in various kinds of 
heat-exchange equipment is known to require the solution of complex multidimensional problems. 
The advent of the Ritz and Bubnov-Galerkin methods for the solution of problems in the varia- 
tional and differential formulations, respectively, set the stage for the development of a 
powerful trend in applied math~-,~tlcs, viz., projection methods [i, 2]j and afforded the con- 
ceptual possibility of solving a broad category of multidimensional problems. However, even 
in cases where the theory guarantees convergence of the indicated methods, a sufficiently 
accurate solution is obtainable, as a rule, for a large number n of pertinent parameters. 
This fact, in turnj means the application of computing hardware. Familiar difficulties may 
also be encountered in connection with the onset of instability and, accordingly, a loss of 
accuracy of the solution with increasing value of n (contrary to theory), up to the point of 
complete divergence of the process [i]. Coping with these difficulties by refinement of the 
coordinate functions through their orthogonalization, compliance with boundary conditions, 
etc., is not too effective in the general case, because all of these procedures are imple- 
mented on a distinctly a priori choice of basis. A cardinal solution of the general problem 
can be achieved by seeking to obtain reliable (not a prioril) functional information with 
essential reliance on the original mathematical statement of the problem. A fi=st step in 
this direction is offered by the method of reduction to Kantorovich-Vlasov ordinary differ- 
ential equations [3j 4]. In this method the constant coefficients involved in the Ritz 
(Galerkin) procedure are superseded by functional coefficients depending on one of the argu- 
ments of the problem~ i.e., the required solution u(x) of an N-dimensional problem is repre- 
sented in the form 

Here ~(x) = {~m (~)}m=~ is a vector function of a vector argument x = (x:, xa, ..., XN) , the 
components of which are basic functions selected a priori; K(x k) = {Kj(Xk)}nj=~ , vector func- 
tion of a variable Xk, the components of which are evaluated deterministically from the one- 
dimensional problem; and F, function characterizing the form of representation of the solution, 
i.e., its structure. It is customarily assumed in projection methods that 

n 
u (x] = Km (la) 

n Z ~  | 

This approach improved the convergence of the solution in comparsion with the Ritz and 
Bubnov-Galerkin procedures. However, because of the intuitive choice of functional informa- 
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